
Applied Zero Knowledge Proofs

Dan Boneh and Binyi Chen
Stanford University

CS355 Spring 2025

https://cs355.stanford.edu

[discussions on edstem, homework on gradescope]

Succinct non-interactive proofs

SNARK: a succinct proof that a certain statement is true

Example statement: “I know an 𝑚 such that SHA256(𝑚) = 0”

• SNARK: the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK: the proof “reveals nothing” about 𝑚

A simple example: digits of Pi
Alice claims that the billion-th digit of Pi is 5
• if Bob, Carol, and David want to check ⇒ redo the entire computation

Alternatively: Alice publishes a SNARK proof 𝜋 for her claim

• Now, Bob, Carol, and David can just check the proof 𝜋 (fast)

• Alice would spend the effort to build 𝜋 if there are many verifiers

How hard is proof generation? ≈30 MHz RISC-V computer
(using one H200 GPU, MatterLabs Boojum 2.0 prover)

Much commercial and research effort
A (partial) map of companies using and building SNARKs

source: ZKV

Strong demand from industry for ever faster provers

Why so much interest in SNARKs now?

The breakthrough: new SNARK systems with a fast prover

• Many commercial applications

• Many beautiful ideas

a large bibliography: a16zcrypto.com/zero-knowledge-canon

Babai-Fortnow-Levin-Szegedy 1991:

 In this setup, a single reliable PC can monitor
 the operation of a herd of supercomputers
 working with unreliable software.

Applications: (1) Scaling Blockchains

“Checking Computations in Polylogarithmic Time”

CPUs

a slow and expensive computer

Applications: (1) Scaling Blockchains
On an L1 chain: every validator verifies all transactions

verify
all Tx

verify
all Tx

verify
all Tx

block

⇒ limited # Tx in a block

(simplified)

Applications: (1) Scaling Blockchains
A zk-Rollup: validators only check proof that Tx are valid

verify
𝜋verify

𝜋

verify
𝜋

rollup
server

⇒ 100x more transactions per second

(simplified)

summary, 𝝅
(single Tx)

(note: ZK is not needed for this application)

Application (1’): private transactions

1

1

1

Alice, Bob, and Carol
deposit 1 ETH each

Tornado

PrivatePools
Railgun

1zero-knowledge:
hides who is
withdrawing

Who owns coin???
Anonymity set =

{Alice, Bob, Carol}

proof 𝝅
I can withdraw one coin

Applications: (2) SNARKs in ML (ZKML)
I trained a secret financial model 𝜃

Alice financial data 𝑄

decision (inference 𝐼)

Is the same model used for everyone ??

Did the server run the model correctly ??
𝜽

Server

Alice

Applications: (2) SNARKs in ML (ZKML)
I trained a secret financial model 𝜃

com ⇽ Commit(𝜃)

Alice financial data 𝑄

decision (inference 𝐼)

𝜽

Server
com

Alice

π proves: server knows 𝜽 s.t.

 (i) 𝑓𝜽(𝑄) = 𝐼	 and (ii) com = Commit(𝜽)

, proof 𝝅

Applications: (2) SNARKs in ML (ZKML)
I trained a secret financial model 𝜃

com ⇽ Commit(𝜃)

Alice financial data 𝑄

decision (inference 𝐼)

𝜽

Server
com

Alice

Is this practical? Commercial library: EZKL

, proof 𝝅

FairProof: proving model fairness in ZK

com

Mortgage decision, proof 𝝅

[Yadav-Chowdhury-B-Chaudhuri, ICLR’24]

Alice’s financial data

Alice

Proof 𝝅 proves:
• Local Individual Fairness: treating similar people similarly [DHPRZ’12]

• Same model used for everyone

ExpProof: proving AI model explanation in ZK

com

[Yadav-Laufer-B-Chaudhuri, 2025]

Alice

financial data Q

decision (Y/N)

Why? requirement for
an explanation

com

[Yadav-Laufer-B-Chaudhuri, 2025]

Alice

financial data Q

Why?

decision D, explanation E
(LIME)

Proof π:

ExpProof: proving AI model explanation in ZK

, proof π

Applications: (3) image provenance

C2PA: a standard for content provenance

embedded certified
signing key sk

location
timestamp

signature verify metadata
by checking sig

C2PA

60MP(also Sony and Nikon)

2025: Cloudflare support

A problem: post-processing (editing)
Newspapers often process the photos before publishing:
• Resize (1500×1000), Crop, Grayscale, Blur face (AP lists allowed ops)

The problem: laptop cannot verify signature on processed photo

???processed
photo

The Solution proposed by C2PA is not ideal … is there a better solution?

A Cryptographic Solution: zkSNARKs

location
timestamp

proof π

edited
photo

⇒ Laptop verifies 𝜋 and shows metadata to user

Laptop has (Edited, Ops). Editing software attaches a proof 𝜋 that:

 I know a witness (Orig, Sig) such that
1. Sig is a valid C2PA signature on Orig
2. Edited is the result of applying Ops to Orig
3. metadata(Edited) = metadata(Orig)

public statement

Application (4): liberating Web data

Goal: ZK proof that Bob’s bank account balance > X
 ZK proof that Bob bought a ticket to the Lakers game
 ZK proof that Bob ordered DoorDash 10 times this month

⋯

The challenge: no changes to web site!

zk TLS (DECO: CCS’2020)

The problem: TLS payload is not authenticated
HTTPS

web serverbrowser TLS session setup
(signed by web server)

session-key session-key

TLS HTML payload
(encrypted with session key)

Future: RFC 9421 (HTTP msg sigs)

⇒ enc. payload can be forged by client

A TLS Proxy Design

browser HTTPS
web server

web proxy

signing key

HTTPS request

signed HTTPS
response by proxy

Browser generates ZK proof that:
• HTTPS handshake is signed by bank
• encrypted payload is signed by proxy
• decrypted payload says balance > X

A network attack:
 cause proxy to sign
 incorrect encrypted
 TLS frame

(simplified)

Course organization
1. Next lecture: what is a succinct ZK proof? (definitions)

2. Bommer ZK proofs: Σ−protocols and their applications

3. First succinct proofs: Bulletproofs and Groth16

4. Succinct proof toolchains

5. Modern succinct proof systems:

 Plonk, HyperPlonk, code-based proofs

6. SNARK recursion and folding: reducing memory needs

Course organization

cs355.stanford.edu

• Homework problems and project. No final exam.
• Optional weekly sections on Friday

Please tell us how we can improve …
Don’t wait until the end of the quarter

Let’s get started …

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function 𝐻: 	 𝑀	 ⇾ 	𝑇	
where |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇	 = 0,1 "#$

Collision resistance

Def: a collision for 𝐻:𝑀 ⇾ 𝑇 is pair 𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇|	 implies that many collisions exist

Def: a function 𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find
even a single collision for 𝐻 (we say 𝐻 is a CRH)

Example: SHA256: {𝑥 : len(𝑥)<264 bytes} ⇾ {0,1}256

details in CS255(output is 32 bytes)

(2) Cryptographic Commitments

Def: a commitment scheme is a pair of eff. algorithms (𝐶, 𝑉) where
• 𝐶(𝑚, 𝑟) ⇾ 𝑐𝑜𝑚 commits to a message 𝑚 ∊ ℳ using randomness 𝑟 ∊ ℛ
• 𝑉(𝑚, 𝑟, 𝑐𝑜𝑚) ⇾ 0/1
such that for all 𝑚 ∊ ℳ, 𝑟 ∊ ℛ: 𝑉(𝑚, 𝑟, 𝐶(𝑚, 𝑟)) = 1.

<latexit sha1_base64="rToMpjfGssGgabTmE4Wi+3LOIhI=">AAACdnicbVFdSyMxFM2MX9361dUnESRYxBakzMiii7jQXV987IKtQjMMmfS2BpPMkGRky9Cf4J/bt/0d++LjZsYKavfCJYdz7s1Nzk0ywY0Ngj+ev7S8srpW+1Rf39jc2m583hmYNNcM+iwVqb5LqAHBFfQttwLuMg1UJgJuk4erUr99BG14qm7sNINI0oniY86odVTceCI9TRI+EUNMJLX3jIri+6zVxsSmuEUs/HKXFiyVsxMZByfapYxDd4Ztgi8IHrRe6be1bfytUqrCBSXE5UQd4Uv8KimYCDc1bjSDTlAFXgThHDTRPHpx4zcZpSyXoCwT1JhhGGQ2Kqi2nAmY1UluIKPsgU5g6KCiEkxUVLbN8JFjRnicapfK4op921FQacxUJq6ytMZ81Eryf9owt+OvUcFVlltQ7GXQOBfYWVruAI+4BmbF1AHKNHdvxeyeasqs21TdmRB+/PIiGJx2wrPO2c8vze6PuR01tI8OUQuF6Bx10TXqoT5i6K+35x16Te/ZP/CP/OOXUt+b9+yid+EH/wCpArrq</latexit>

Pr
[
A() → (com,m0, r0,m1, r1) : V (m0, r0, com) = V (m1, r1, com) = 1

]
< negl()

The scheme is computationally binding if for every efficient adv. 𝐴:

The scheme is unconditionally hiding if for every adv. 𝐴 and all 𝑚!, 𝑚" ∊ ℳ
<latexit sha1_base64="/4F1N+2K6ZollCWT89VadPmdiDM=">AAACkHicdVFdb9MwFHXC1ygMynjk5YoOqZVGFQMae9jEPl4QTwXRbVIdRY57m1pznGA7QJXl9/B/eOPf4LQVYhscydLRued++N60VNK6KPoVhLdu37l7b+N+58HDzUePu0+2Tm1RGYFjUajCnKfcopIax046heelQZ6nCs/Si5M2fvYVjZWF/uwWJcY5z7ScScGdl5LuD3YsM3UJbGRY6tmE5dzNBVf1UdM/6edJtGOSaDCAA6CtwcTw8v9m6s30irktby5hH5jD736+WmOmmv5gB9iXik9Xcv1tjgZh2yy7UWAZOgt/in9qtpuk24uG0RJwk9A16ZE1Rkn3J5sWospRO6G4tRMalS6uuXFSKGw6rLJYcnHBM5x4qnmONq6XC23ghVemMCuMf9rBUv07o+a5tYs89c52SHs91or/ik0qN9uLa6nLyqEWq0azSoEroL0OTKVB4dTCEy6M9LOCmHPDhfM37Pgl0OtfvklOXw3p7nD345ve4fF6HRvkGXlO+oSSt+SQvCcjMiYi2AxeB/vBQbgV7oXvwqOVNQzWOU/JFYQffgMiOsMS</latexit>∣∣∣Pr

[
A(C(m0, r0)) = 1

]
→ Pr

[
A(C(m1, r1)) = 1

]∣∣∣ < negl(), where r0, r1 ↑ R

(2) Cryptographic Commitments

Def: a commitment scheme (𝐶, 𝑉) is succinct if the size of 𝑐𝑜𝑚 is
independent of the size of 𝑚

𝑚
𝐶(𝑚, 𝑟)

𝑐𝑜𝑚
megabytes 32 bytes

Note: an unconditionally binding commitment scheme cannot be succinct. Why?

Def: a binding commitment scheme is a commitment scheme that
is binding but not necessarily hiding.

(actually 0,1 !)

A commitment scheme from a CRH

Let 𝐻:ℳ×ℛ ⇾ 𝑇 be a hash function

Define: 𝐶(𝑚, 𝑟) ≔ 𝐻(𝑚, 𝑟) and 𝑉(𝑚, 𝑟, 𝑐𝑜𝑚) = 1 iff 𝐻(𝑚, 𝑟) = 𝑐𝑜𝑚

Thm 1: if 𝐻 is CRH then (𝐶, 𝑉) is a computationally binding scheme

Thm 2: if for all 𝑚 ∊ ℳ the distr. {𝐻(𝑚, 𝑟) ∶ 𝑟 ⇽ ℛ} is uniform in 𝑇
 then (𝐶, 𝑉) is an unconditionally hiding scheme

Note: when 𝑇 = 0,1 + the commitment scheme is succinct

(3) Vector commitments

Def: a vector commitment scheme is a triple of eff. algorithms (𝐶, 𝑂, 𝑉) s.t.
• 𝐶(𝑣, 𝑟) ⇾ 𝑐𝑜𝑚 commits to a vector 𝑣 ∊ 𝑾! using randomness 𝑟 ∊ ℛ
• 𝑂 𝑣, 𝑟, 𝑖 ⇾ 𝜋 for 𝑖 ∊ [𝑛] outputs a proof 𝜋 for the value of 𝑣[𝑖]
• 𝑉(𝑐𝑜𝑚, 𝑢 ∊ 𝑾, 𝑖, 𝜋) ⇾ 0/1 verifies that 𝜋 is a valid proof that 𝑣[𝑖] = 𝑢
such that for all 𝑣 ∊ 𝑾!, 𝑟 ∊ ℛ, 𝑖 ∊ [𝑛]: 𝑉(𝐶 𝑣, 𝑟 , 𝑣[𝑖], 𝑖, 𝑂 𝑣, 𝑟, 𝑖) = 1.

Hiding (informally): defined as for commitments, but holds for all unopened cells,
after adversary sees a bunch of opening proofs chosen by the adversary.

Def: the scheme is binding for 𝑛 ∊ ℕ if for every efficient adv. 𝐴:
<latexit sha1_base64="CCC8NfaNF1awIn4xKrQ3mysRJf8=">AAAC43icdVLNi9QwFE/r1zp+jXr08nAQZmAYWpFVRGHVi8cRnNmFptQ086YTNk1rkopD6dWLB0W8+k9581/xZNqp4u7qg5Bf3vu976SlFMYGwQ/PP3f+wsVLe5cHV65eu35jePPW0hSV5rjghSz0UcoMSqFwYYWVeFRqZHkq8TA9ftHaD9+hNqJQr+22xDhnmRJrwZl1qmT4k841lbi2EdCc2Q1nsn7WjCdAbQFjavG9C1rzIm+mIIAKBZGKp1AlwRRoKdqrSsIdDicUHgNNMROqZlqzbVPzBpY0FZk8Gav1F9MuQGvVE3j6H17Y88I/vBAohY5VA1MraNwL2oqAKnzblgMU1aqvAKgW2cbG8AR+R1aYSddiMhwFs6ATOAvCHoxIL/Nk+J2uCl7lqCyXzJgoDEobuzxWcInNgFYGS8aPWYaRg4rlaOK621ED95xmBetCu6MsdNq/PWqWG7PNU8ds92BO21rlv2xRZdeP4lqosrKo+C7RupLg9tcuHFZCI7dy6wDjWrhagW+YZty6bzFwQwhPt3wWLO/Pwv3Z/qsHo4Pn/Tj2yB1yl4xJSB6SA/KSzMmCcO+N98H75H320f/of/G/7qi+1/vcJifE//YL0/rjsw==</latexit>

Pr

[
A() → (com, i ↑ [n], u0,ω0, u1,ω1) :

V
(
com, u0, i,ω0

)
= V

(
com, u1, i,ω1

)
= 1

and u0 ↓= u1

]
< negl()

Merkle tree (Merkle 1989)

Merkle tree
commitment

ℎ

𝑣0 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

Goal:
• commit to a vector 𝑣
• Later prove 𝑣[𝑖] = 𝑢

commitment 𝑐𝑜𝑚 ≔

Merkle tree (Merkle 1989) [simplified]

𝑣1 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

ℎ

H H H H

H H

H

To prove 𝑣 3 = 𝑢 ,

 proof π ≔ 𝑣", 𝑦,, 𝑦$

𝑦1 𝑦" 𝑦- 𝑦.

𝑦# 𝑦$

length of proof: log2	𝑛

Goal:
• commit to a vector 𝑣
• Later prove 𝑣[𝑖] = 𝑢

𝑐𝑜𝑚 ≔
𝐻:𝑋" ⇾ 𝑋

Merkle tree (Merkle 1989) [simplified]

𝑣1 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

ℎ

H H H H

H H

H

To prove 𝑣 3 = 𝑢 ,

 proof π ≔ 𝑣", 𝑦,, 𝑦$

𝑦1 𝑦" 𝑦- 𝑦.

𝑦# 𝑦$

Alg. 𝑉(𝑐𝑜𝑚, 𝑢, 𝑖 = 3, 𝜋):
 𝑦2	 ⇽ 	𝐻(𝑣2, 𝑢)

𝑦5	 ⇽ 	𝐻(𝑦1, 𝑦2)
ℎ’	 ⇽ 	𝐻(𝑦5, 𝑦6)

 accept if ℎ’ = 𝑐𝑜𝑚

𝑐𝑜𝑚 ≔

Merkle tree (Merkle 1989)

Thm: if 𝐻 is a CRH then Merkle is a binding vector commitment

 for all bounded (poly-size) 𝑛.

We will use this a lot !!

Question: how to make this hiding?

Next lecture: definitions and a first example

END OF LECTURE

