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Succinct non-interactive proofs

SNARK:   a succinct proof that a certain statement is true

Example statement:   “I know an 𝑚 such that  SHA256(𝑚) = 0”

• SNARK:  the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK:  the proof “reveals nothing” about 𝑚



A simple example:  digits of Pi
Alice claims that the billion-th digit of Pi is 5
• if Bob, Carol, and David want to check  ⇒  redo the entire computation

Alternatively:  Alice publishes a SNARK proof 𝜋 for her claim

• Now, Bob, Carol, and David can just check the proof 𝜋     (fast)

• Alice would spend the effort to build 𝜋 if there are many verifiers

How hard is proof generation?     ≈30 MHz RISC-V computer   
(using one H200 GPU,  MatterLabs Boojum 2.0 prover)



Much commercial and research effort 
A (partial) map of companies using and building SNARKs

source: ZKV

Strong demand from industry for ever faster provers



Why so much interest in SNARKs now?

The breakthrough:  new SNARK systems with a fast prover

• Many commercial applications

• Many beautiful ideas

a large bibliography:     a16zcrypto.com/zero-knowledge-canon



Babai-Fortnow-Levin-Szegedy 1991:

 In this setup, a single reliable PC can monitor 
 the operation of a herd of supercomputers 
 working with unreliable software.

Applications:  (1) Scaling Blockchains

“Checking Computations in Polylogarithmic Time”

CPUs

a slow and expensive computer



Applications:  (1) Scaling Blockchains
On an L1 chain: every validator verifies all transactions

verify
all Tx

verify
all Tx

verify
all Tx

block

⇒  limited # Tx in a block

(simplified)



Applications:  (1) Scaling Blockchains
A zk-Rollup:  validators only check proof that Tx are valid

verify
𝜋verify

𝜋

verify
𝜋

rollup
server

⇒  100x more transactions per second

(simplified)

summary,   𝝅
(single Tx)

(note:  ZK is not needed for this application)



Application (1’):  private transactions

1

1

1

Alice, Bob, and Carol
deposit 1 ETH each

Tornado

PrivatePools
Railgun

1zero-knowledge:
hides who is 
withdrawing

Who owns coin???
Anonymity set = 

{Alice, Bob, Carol}

proof 𝝅
I can withdraw one coin 



Applications:  (2) SNARKs in ML    (ZKML)
I trained a secret financial model 𝜃

Alice financial data  𝑄

decision (inference 𝐼)

Is the same model used for everyone ??

Did the server run the model correctly ??
𝜽

Server

Alice



Applications:  (2) SNARKs in ML    (ZKML)
I trained a secret financial model 𝜃

com ⇽ Commit(𝜃)

Alice financial data  𝑄

decision (inference 𝐼)

𝜽

Server
com

Alice

π proves:   server knows 𝜽  s.t.

   (i)   𝑓𝜽(𝑄) = 𝐼	 and    (ii) com = Commit(𝜽)  

,  proof 𝝅



Applications:  (2) SNARKs in ML    (ZKML)
I trained a secret financial model 𝜃

com ⇽ Commit(𝜃)

Alice financial data  𝑄

decision (inference 𝐼)

𝜽

Server
com

Alice

Is this practical?  Commercial library:  EZKL

,  proof 𝝅



FairProof: proving model fairness in ZK

com

Mortgage decision,  proof 𝝅

[Yadav-Chowdhury-B-Chaudhuri,  ICLR’24]

Alice’s financial data

Alice

Proof 𝝅 proves:
• Local Individual Fairness: treating similar people similarly [DHPRZ’12]

• Same model used for everyone



ExpProof: proving AI model explanation in ZK

com

[Yadav-Laufer-B-Chaudhuri,  2025]

Alice

financial data Q

decision (Y/N)

Why? requirement for
an explanation



com

[Yadav-Laufer-B-Chaudhuri,  2025]

Alice

financial data Q

Why?

decision D,   explanation E
(LIME)

Proof π:

ExpProof: proving AI model explanation in ZK

,  proof π



Applications: (3) image provenance



C2PA: a standard for content provenance

embedded certified
signing key  sk

location
timestamp

signature  verify metadata
by checking sig

C2PA

60MP(also Sony and Nikon)

2025:  Cloudflare support



A problem:  post-processing (editing)
Newspapers often process the photos before publishing:
• Resize (1500×1000),  Crop,  Grayscale,  Blur face  (AP lists allowed ops)

The problem:   laptop cannot verify signature on processed photo

???processed
photo

The Solution proposed by C2PA is not ideal … is there a better solution?



A Cryptographic Solution:  zkSNARKs

location
timestamp

proof  π

edited
photo

⇒  Laptop verifies  𝜋  and shows metadata to user

Laptop has (Edited, Ops).   Editing software attaches a proof  𝜋 that:

 I know a witness (Orig, Sig)  such that
1. Sig is a valid C2PA signature on Orig
2. Edited is the result of applying Ops to Orig
3. metadata(Edited) = metadata(Orig)

public statement



Application (4):  liberating Web data

Goal: ZK proof that Bob’s bank account balance > X
 ZK proof that Bob bought a ticket to the Lakers game
 ZK proof that Bob ordered DoorDash 10 times this month

⋯

The challenge:     no changes to web site!



zk TLS       (DECO:  CCS’2020)

The problem:   TLS payload is not authenticated
HTTPS 

web serverbrowser TLS session setup
(signed by web server)

session-key session-key

TLS HTML payload
(encrypted with session key)

Future:  RFC 9421   (HTTP msg sigs)

⇒  enc. payload can be forged by client



A TLS Proxy Design

browser HTTPS 
web server

web proxy

signing key

HTTPS request

signed HTTPS 
response by proxy

Browser generates ZK proof that:
• HTTPS handshake is signed by bank
• encrypted payload is signed by proxy
• decrypted payload says balance > X

A network attack:
   cause proxy to sign
   incorrect encrypted
   TLS frame

(simplified)



Course organization
1. Next lecture:  what is a succinct ZK proof?   (definitions)

2. Bommer ZK proofs:   Σ−protocols and their applications

3. First succinct proofs:  Bulletproofs and Groth16

4. Succinct proof toolchains

5. Modern succinct proof systems:

   Plonk, HyperPlonk, code-based proofs

6. SNARK recursion and folding:  reducing memory needs



Course organization

cs355.stanford.edu

• Homework problems and project.   No final exam.
• Optional weekly sections on Friday

Please tell us how we can improve …
Don’t wait until the end of the quarter



Let’s get started …



Cryptography Background

(1) cryptographic hash functions

An efficiently computable function     𝐻: 	 𝑀	 ⇾ 	𝑇	
where   |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇	 = 0,1 "#$



Collision resistance

Def:   a collision for 𝐻:𝑀 ⇾ 𝑇 is pair  𝑥 ≠ 𝑦 ∈ 𝑀   s.t.    𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇|	 implies that many collisions exist

Def: a function  𝐻:𝑀 ⇾ 𝑇  is collision resistant if it is “hard” to find 
even a single collision for 𝐻     (we say 𝐻 is a CRH)

Example:    SHA256:   {𝑥 : len(𝑥)<264 bytes} ⇾ {0,1}256

details in CS255(output is 32 bytes)



(2) Cryptographic Commitments

Def:  a commitment scheme is a pair of eff. algorithms (𝐶, 𝑉) where
• 𝐶(𝑚, 𝑟) ⇾ 𝑐𝑜𝑚   commits to a message 𝑚 ∊ ℳ using randomness  𝑟 ∊ ℛ 
• 𝑉(𝑚, 𝑟, 𝑐𝑜𝑚) ⇾ 0/1
such that for all 𝑚 ∊ ℳ, 𝑟 ∊ ℛ:   𝑉(𝑚, 𝑟, 𝐶(𝑚, 𝑟)) = 1.

<latexit sha1_base64="rToMpjfGssGgabTmE4Wi+3LOIhI="></latexit>

Pr
[
A() → (com,m0, r0,m1, r1) : V (m0, r0, com) = V (m1, r1, com) = 1

]
< negl()

The scheme is computationally binding if for every efficient adv. 𝐴: 

The scheme is unconditionally hiding if for every adv. 𝐴 and all 𝑚!, 𝑚" ∊ ℳ
<latexit sha1_base64="/4F1N+2K6ZollCWT89VadPmdiDM="></latexit>∣∣∣Pr

[
A(C(m0, r0)) = 1

]
→ Pr

[
A(C(m1, r1)) = 1

]∣∣∣ < negl(), where r0, r1 ↑ R



(2) Cryptographic Commitments

Def: a commitment scheme (𝐶, 𝑉) is succinct if the size of 𝑐𝑜𝑚 is 
independent of the size of 𝑚

𝑚
𝐶(𝑚, 𝑟)

𝑐𝑜𝑚
megabytes 32 bytes

Note: an unconditionally binding commitment scheme cannot be succinct.  Why?

Def: a binding commitment scheme is a commitment scheme that 
is binding but not necessarily hiding.

(actually 0,1 !)



A commitment scheme from a CRH

Let  𝐻:ℳ×ℛ ⇾ 𝑇  be a hash function

Define:   𝐶(𝑚, 𝑟) ≔ 𝐻(𝑚, 𝑟)      and      𝑉(𝑚, 𝑟, 𝑐𝑜𝑚) = 1 iff 𝐻(𝑚, 𝑟) = 𝑐𝑜𝑚

Thm 1:  if 𝐻 is CRH then (𝐶, 𝑉) is a computationally binding scheme

Thm 2:  if for all 𝑚 ∊ ℳ the distr.  {𝐻(𝑚, 𝑟) ∶ 𝑟 ⇽ ℛ} is uniform in 𝑇
   then (𝐶, 𝑉) is an unconditionally hiding scheme

Note:  when 𝑇 = 0,1 +  the commitment scheme is succinct



(3)  Vector commitments

Def:  a vector commitment scheme is a triple of eff. algorithms (𝐶, 𝑂, 𝑉) s.t. 
• 𝐶(𝑣, 𝑟) ⇾ 𝑐𝑜𝑚 commits to a vector 𝑣 ∊ 𝑾! using randomness  𝑟 ∊ ℛ
• 𝑂 𝑣, 𝑟, 𝑖 ⇾ 𝜋  for 𝑖 ∊ [𝑛] outputs a proof 𝜋 for the value of 𝑣[𝑖]
• 𝑉(𝑐𝑜𝑚, 𝑢 ∊ 𝑾, 𝑖, 𝜋) ⇾ 0/1  verifies that 𝜋 is a valid proof that 𝑣[𝑖] = 𝑢
such that for all 𝑣 ∊ 𝑾!, 𝑟 ∊ ℛ, 𝑖 ∊ [𝑛]:   𝑉(	𝐶 𝑣, 𝑟 , 𝑣[𝑖], 𝑖, 𝑂 𝑣, 𝑟, 𝑖 	) = 1.

Hiding (informally): defined as for commitments, but holds for all unopened cells,
after adversary sees a bunch of opening proofs chosen by the adversary.

Def:  the scheme is binding for 𝑛 ∊ ℕ  if for every efficient adv. 𝐴: 
<latexit sha1_base64="CCC8NfaNF1awIn4xKrQ3mysRJf8="></latexit>

Pr

[
A() → (com, i ↑ [n], u0,ω0, u1,ω1) :

V
(
com, u0, i,ω0

)
= V

(
com, u1, i,ω1

)
= 1

and u0 ↓= u1

]
< negl()



Merkle tree     (Merkle 1989)

Merkle tree
commitment

ℎ

𝑣0 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

Goal:
• commit to a vector 𝑣 
• Later prove  𝑣[𝑖] = 𝑢

commitment   𝑐𝑜𝑚 ≔



Merkle tree     (Merkle 1989)         [simplified]

𝑣1 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

ℎ

H H H H

H H

H

To prove 𝑣 3 = 𝑢 ,

 proof π ≔ 𝑣", 𝑦,, 𝑦$

𝑦1 𝑦" 𝑦- 𝑦.

𝑦# 𝑦$

length of proof:  log2	𝑛

Goal:
• commit to a vector 𝑣 
• Later prove  𝑣[𝑖] = 𝑢

𝑐𝑜𝑚 ≔
𝐻:𝑋" ⇾ 𝑋



Merkle tree     (Merkle 1989)         [simplified]

𝑣1 𝑣, 𝑣" 𝑣- 𝑣. 𝑣$𝑣# 𝑣/

a vector 𝑣 ∊ 𝑉0

ℎ

H H H H

H H

H

To prove 𝑣 3 = 𝑢 ,

 proof π ≔ 𝑣", 𝑦,, 𝑦$

𝑦1 𝑦" 𝑦- 𝑦.

𝑦# 𝑦$

Alg. 𝑉(𝑐𝑜𝑚, 𝑢, 𝑖 = 3, 𝜋):
 𝑦2	 ⇽ 	𝐻(𝑣2, 𝑢)

𝑦5	 ⇽ 	𝐻(𝑦1, 𝑦2)
ℎ’	 ⇽ 	𝐻(𝑦5, 𝑦6)

 accept if  ℎ’ = 𝑐𝑜𝑚

𝑐𝑜𝑚 ≔



Merkle tree     (Merkle 1989)

Thm:   if 𝐻 is a CRH then Merkle is a binding vector commitment

  for all bounded (poly-size) 𝑛. 

We will use this a lot !!

Question: how to make this hiding?



Next lecture:   definitions and a first example

END  OF  LECTURE


