

CS355 Spring 2025

https://cs355.stanford.edu

Applied Zero Knowledge Proofs

Dan Boneh and Binyi Chen Stanford University

[discussions on edstem, homework on gradescope]

Succinct non-interactive proofs

SNARK: a <u>succinct</u> proof that a certain statement is true

Example statement: "I know an *m* such that SHA256(m) = 0"

SNARK: the proof is "short" and "fast" to verify
 [if m is 1GB then the trivial proof (the message m) is neither]

• **zk-SNARK**: the proof "reveals nothing" about m

A simple example: digits of Pi

Alice claims that the billion-th digit of Pi is 5

• if Bob, Carol, and David want to check \Rightarrow redo the entire computation

Alternatively: Alice publishes a SNARK proof π for her claim

- Now, Bob, Carol, and David can just check the proof π (fast)
- Alice would spend the effort to build π if there are many verifiers

How hard is proof generation? ≈30 MHz RISC-V computer (using one H200 GPU, MatterLabs Boojum 2.0 prover)

Much commercial and research effort

A (partial) map of companies using and building SNARKs

source: ZKV

Strong demand from industry for ever faster provers

Why so much interest in SNARKs now?

The breakthrough: new SNARK systems with a fast prover

- Many commercial applications
- Many beautiful ideas

a large bibliography: a16zcrypto.com/zero-knowledge-canon

Applications: (1) Scaling Blockchains

Babai-Fortnow-Levin-Szegedy 1991:

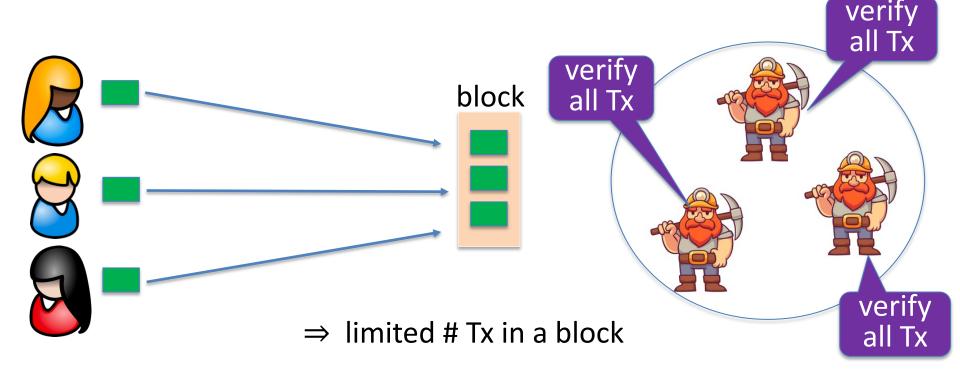
a slow and expensive computer In this setup, a single reliable PC can monitor the operation of a herd of supercomputersworking with unreliable software.

"Checking Computations in Polylogarithmic Time"

Applications: (1) Scaling Blockchains

(simplified)

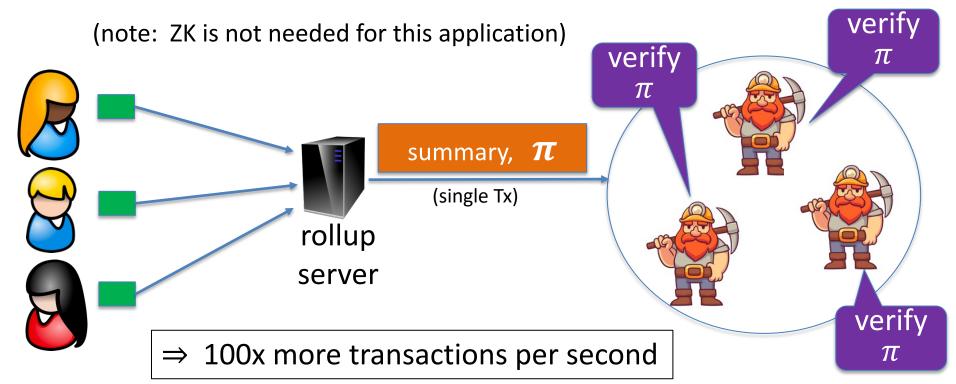
On an L1 chain: every validator verifies all transactions



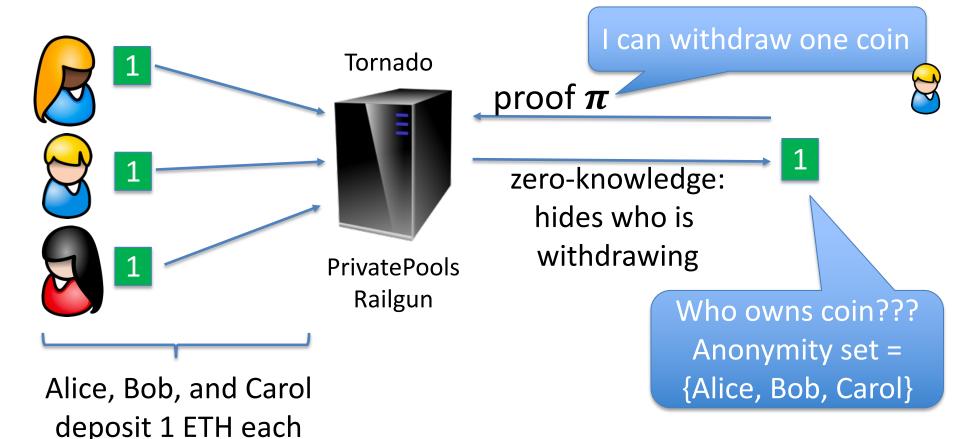
Applications: (1) Scaling Blockchains

(simplified)

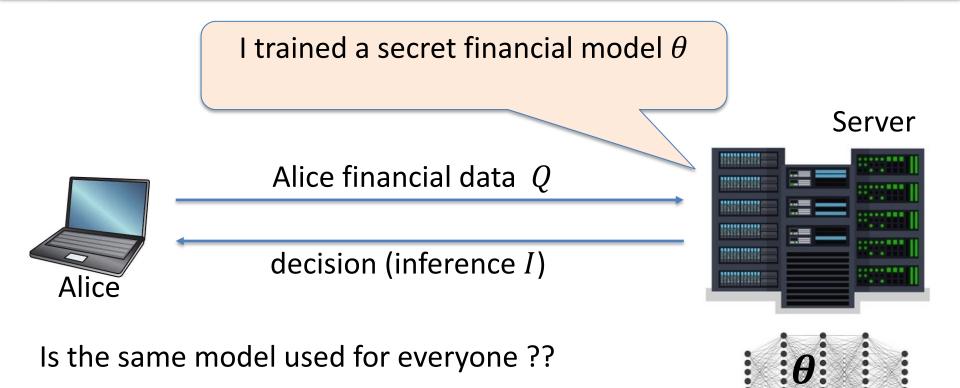
A zk-Rollup: validators only check proof that Tx are valid



Application (1'): private transactions

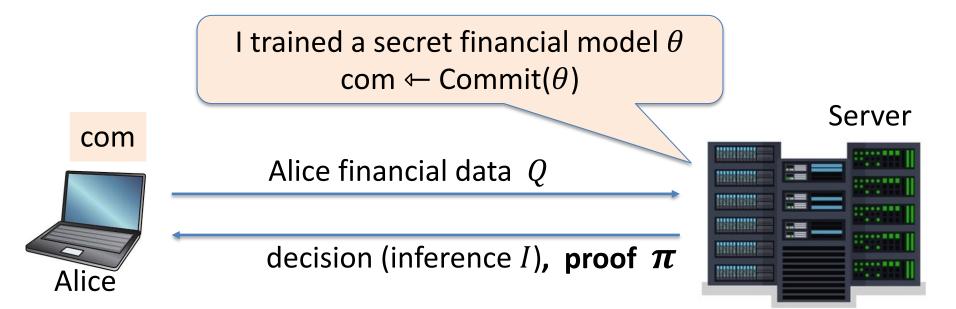


Applications: (2) SNARKs in ML (ZKML)



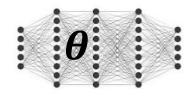
Did the server run the model correctly ??

Applications: (2) SNARKs in ML (ZKML)

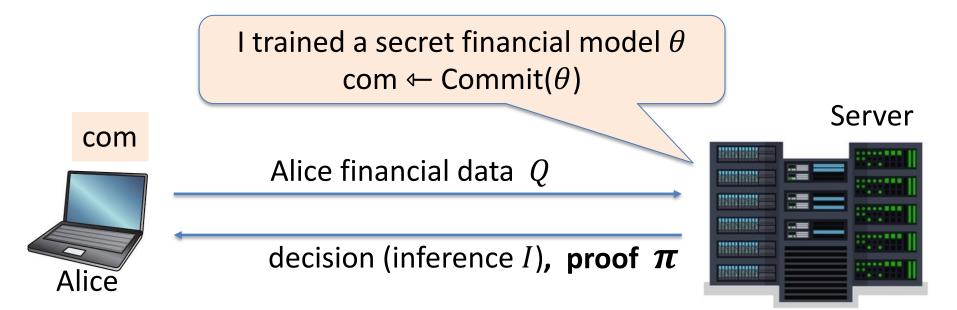


π proves: server knows **θ** s.t.

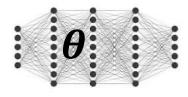
(i) $f_{\theta}(Q) = I$ and (ii) com = Commit(θ)



Applications: (2) SNARKs in ML (ZKML)

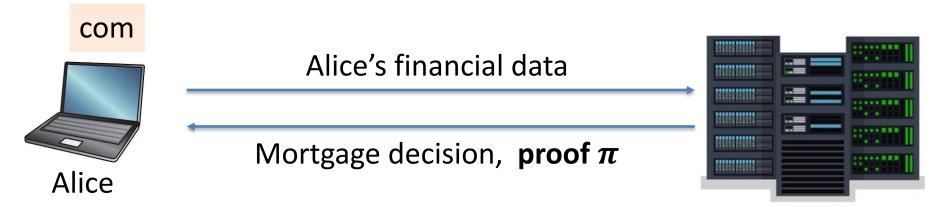


Is this practical? Commercial library: EZKL



FairProof: proving model fairness in ZK

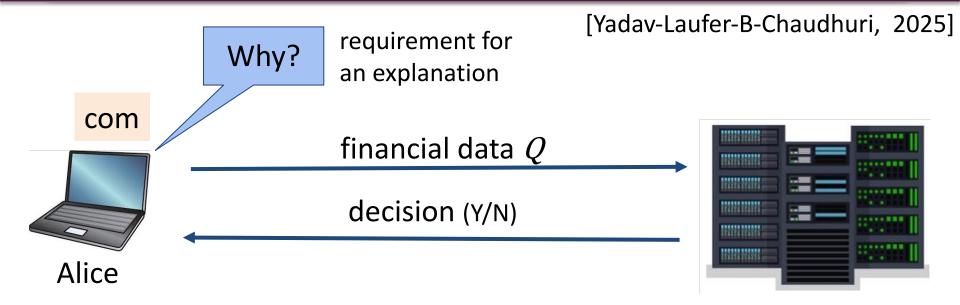
[Yadav-Chowdhury-B-Chaudhuri, ICLR'24]

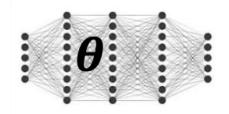


Proof π proves:

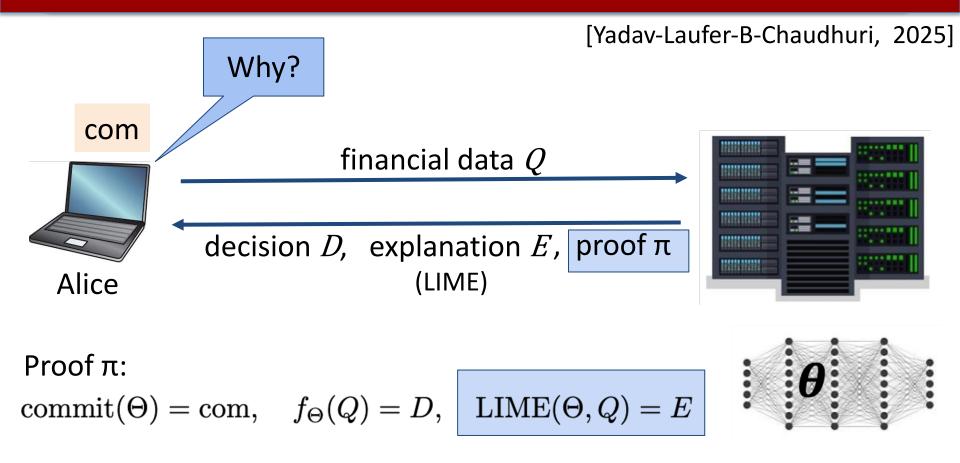
- Local Individual Fairness: treating similar people similarly [DHPRZ'12]
- Same model used for everyone

ExpProof: proving AI model explanation in ZK





ExpProof: proving AI model explanation in ZK



Applications: (3) image provenance

These look like prizewinning photos. They're AI fakes.

Artificially generated images of real-world news events proliferate on stock image sites, blurring truth and fiction

By Will Oremus and Pranshu Verma

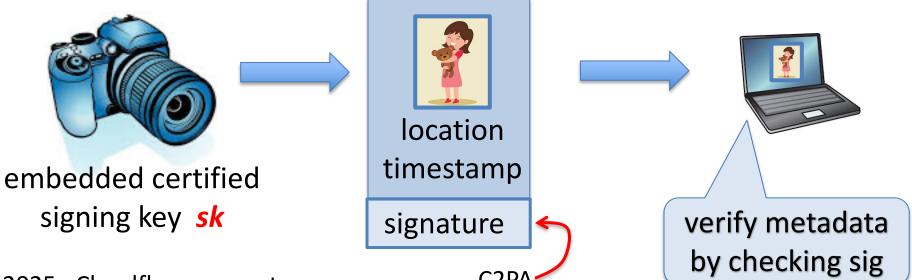
November 23, 2023 at 6:00 a.m. EST

C2PA: a standard for content provenance

Leica camera has built-in defense against misleading AI, costs \$9,125

(also Sony and Nikon)

t 60MP



2025: Cloudflare support

A problem: post-processing (editing)

Newspapers often process the photos before publishing:

• Resize (1500 × 1000), Crop, Grayscale, Blur face (AP lists allowed ops)

The problem: laptop cannot verify signature on processed photo

The Solution proposed by C2PA is not ideal ... is there a better solution?

A Cryptographic Solution: zkSNARKs

public statement

Laptop has (*Edited*, *Ops*). Editing software attaches a proof π that:

I know a witness (Orig, Sig) such that

- 1. Sig is a valid C2PA signature on Orig
- 2. Edited is the result of applying Ops to Orig
- 3. metadata(*Edited*) = metadata(*Orig*)

 \Rightarrow Laptop verifies π and shows metadata to user

edited photo

timestamp

proof π

Application (4): liberating Web data

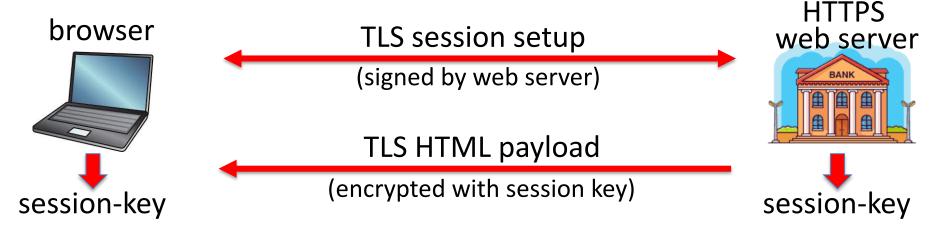
<u>Goal</u>: ZK proof that Bob's bank account balance > X ZK proof that Bob bought a ticket to the Lakers game ZK proof that Bob ordered DoorDash 10 times this month

 $\bullet \bullet \bullet$

The challenge: no changes to web site!

zk TLS (DECO: CCS'2020)

The problem: TLS payload is not authenticated

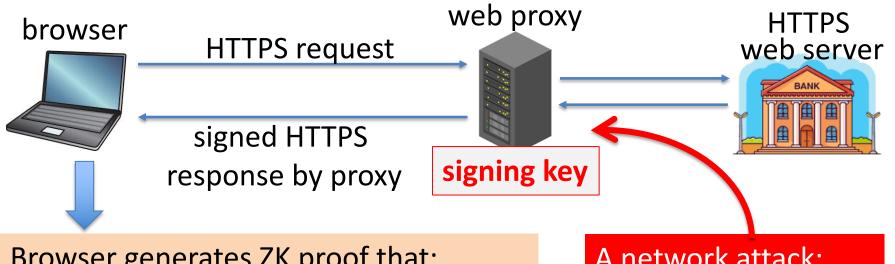


 \Rightarrow enc. payload can be forged by client

Future: RFC 9421 (HTTP msg sigs)

A TLS Proxy Design

(simplified)



Browser generates ZK proof that:

- HTTPS handshake is signed by bank
- encrypted payload is signed by proxy
- decrypted payload says balance > X

A network attack: cause proxy to sign incorrect encrypted **TLS frame**

Course organization

- 1. Next lecture: what is a succinct ZK proof? (definitions)
- 2. Bommer ZK proofs: Σ -protocols and their applications
- 3. First succinct proofs: Bulletproofs and Groth16
- 4. Succinct proof toolchains
- 5. Modern succinct proof systems:

Plonk, HyperPlonk, code-based proofs

6. SNARK recursion and folding: reducing memory needs

Course organization

cs355.stanford.edu

- Homework problems and project. No final exam.
- Optional weekly sections on Friday

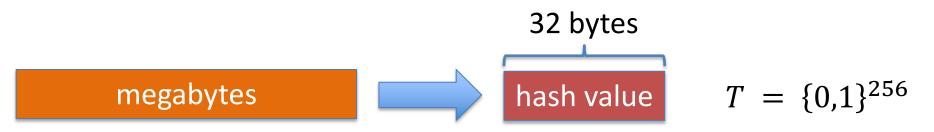
Please tell us how we can improve ... Don't wait until the end of the quarter

Let's get started ...

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function $H: M \rightarrow T$ where $|M| \gg |T|$



Collision resistance

<u>Def</u>: a <u>collision</u> for $H: M \to T$ is pair $x \neq y \in M$ s.t. H(x) = H(y)

 $|M| \gg |T|$ implies that <u>many</u> collisions exist

<u>Def</u>: a function $H: M \rightarrow T$ is <u>collision resistant</u> if it is "hard" to find even a single collision for H (we say H is a CRH)

Example: SHA256: $\{x : \text{len}(x) < 2^{64} \text{ bytes}\} \rightarrow \{0,1\}^{256}$

(output is 32 bytes)

details in CS255

(2) Cryptographic Commitments

<u>Def</u>: a **commitment scheme** is a pair of eff. algorithms (*C*, *V*) where

- $C(m,r) \rightarrow com$ commits to a message $m \in \mathcal{M}$ using randomness $r \in \mathcal{R}$
- $V(m, r, com) \rightarrow 0/1$

such that for all $m \in \mathcal{M}$, $r \in \mathcal{R}$: V(m, r, C(m, r)) = 1.

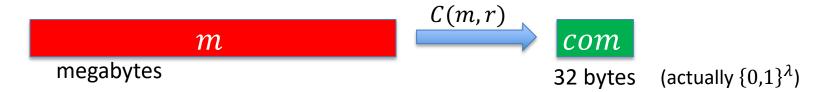
The scheme is **computationally binding** if for every efficient adv. *A*:

 $\Pr[\mathcal{A}() \to (com, m_0, r_0, m_1, r_1) : V(m_0, r_0, com) = V(m_1, r_1, com) = 1] < negl()$

The scheme is **unconditionally hiding** if for every adv. A and all $m_0, m_1 \in \mathcal{M}$ $\left| \Pr[\mathcal{A}(C(m_0, r_0)) = 1] - \Pr[\mathcal{A}(C(m_1, r_1)) = 1] \right| < negl(), \text{ where } r_0, r_1 \leftarrow \mathcal{R}$

(2) Cryptographic Commitments

<u>**Def</u>**: a commitment scheme (C, V) is <u>**succinct**</u> if the size of *com* is independent of the size of *m*</u>



Note: an unconditionally binding commitment scheme cannot be succinct. Why?

<u>**Def</u>**: a **binding commitment scheme** is a commitment scheme that is binding but not necessarily hiding.</u>

A commitment scheme from a CRH

Let $H: \mathcal{M} \times \mathcal{R} \rightarrow T$ be a hash function

Define: $C(m,r) \coloneqq H(m,r)$ and V(m,r,com) = 1 iff H(m,r) = com

<u>Thm 1</u>: if H is CRH then (C, V) is a computationally binding scheme

<u>Thm 2</u>: if for all $m \in \mathcal{M}$ the distr. $\{H(m, r) : r \leftarrow \mathcal{R}\}$ is uniform in T then (C, V) is an unconditionally hiding scheme

Note: when $T = \{0,1\}^{\lambda}$ the commitment scheme is succinct

(3) Vector commitments

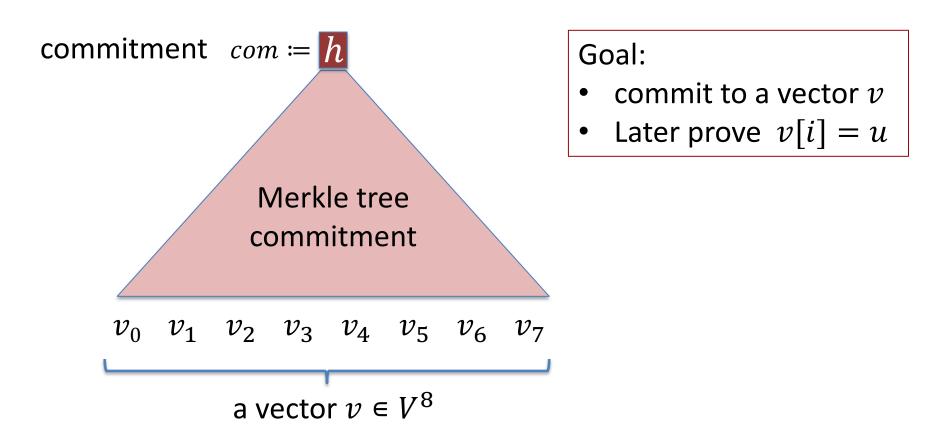
<u>**Def</u>**: a vector commitment scheme is a triple of eff. algorithms (C, O, V) s.t.</u>

- $C(v,r) \rightarrow com$ commits to a vector $v \in W^n$ using randomness $r \in \mathcal{R}$
- $O(v, r, i) \rightarrow \pi$ for $i \in [n]$ outputs a proof π for the value of v[i]
- $V(com, u \in W, i, \pi) \rightarrow 0/1$ verifies that π is a valid proof that v[i] = usuch that for all $v \in W^n, r \in \mathcal{R}, i \in [n]$: V(C(v, r), v[i], i, O(v, r, i)) = 1.

<u>Def</u>: the scheme is **binding** for $n \in \mathbb{N}$ if for every efficient adv. A: $\Pr\left[\mathcal{A}() \to (com, i \in [n], u_0, \pi_0, u_1, \pi_1) : \begin{array}{c} V(com, u_0, i, \pi_0) = V(com, u_1, i, \pi_1) = 1 \\ \text{and} \quad u_0 \neq u_1 \end{array}\right] < negl()$

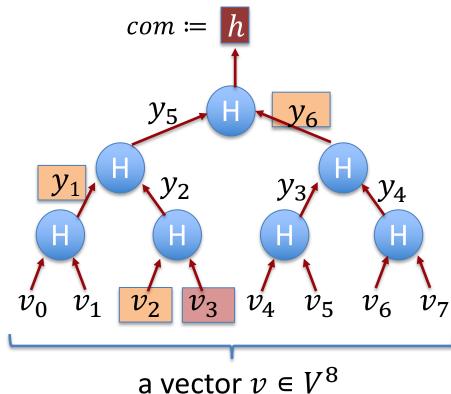
Hiding (informally): defined as for commitments, but holds for all unopened cells, after adversary sees a bunch of opening proofs chosen by the adversary.

Merkle tree (Merkle 1989)



Merkle tree (Merkle 1989) [simplified]

 $H\colon X^2 \twoheadrightarrow X$



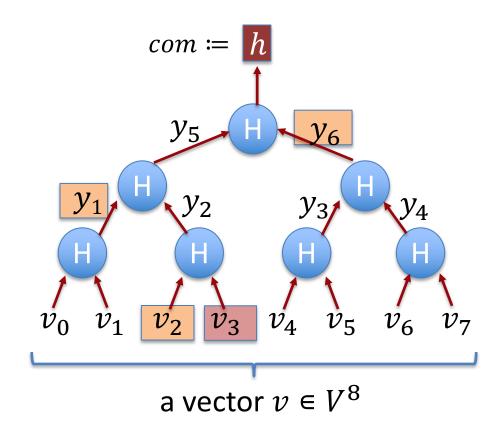
Goal:

- commit to a vector v
- Later prove v[i] = u

To prove
$$v[3] = u$$
,
proof $\pi \coloneqq (v_2, y_1, y_6)$

length of proof: $\log_2 n$

Merkle tree (Merkle 1989) [simplified]



To prove
$$v[3] = u$$
,
proof $\pi \coloneqq (v_2, y_1, y_6)$

Alg.
$$V(com, u, i = 3, \pi)$$
:
 $y_2 \leftarrow H(v_2, u)$
 $y_5 \leftarrow H(y_1, y_2)$
 $h' \leftarrow H(y_5, y_6)$
accept if $h' = com$

Merkle tree (Merkle 1989)

<u>Thm</u>: if *H* is a CRH then Merkle is a binding vector commitment for all bounded (poly-size) *n*.

We will use this a lot !!

Question: how to make this hiding?

END OF LECTURE

Next lecture: definitions and a first example